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A Game-Based Incentive-Driven Offloading
Framework for Dispersed Computing

Hongjia Wu , Jiangtian Nie , Member, IEEE, Zehui Xiong , Member, IEEE, Zhiping Cai , Tongqing Zhou ,
Chau Yuen , Fellow, IEEE, and Dusit Niyato , Fellow, IEEE

Abstract— The popularization of smart Internet of Things
(IoT) devices has facilitated the development of fog/edge com-
puting. However, these infrastructure-based service paradigms
may fail to complete tasks successfully due to computation and
communication overload, or damage in challenging scenarios
such as disasters or traffic jams. Noticing that a crowd of
devices with considerable idle resources could be available,
we investigate the problems of addressing the computation and
communication unavailability with peer assistance in this work.
To this end, we propose a dispersed service framework for
resource-exhausted scenarios that adaptively offloads users’ data
to available network computation points. However, the users
may not be able to achieve the offloading due to geographical
hindrances. Consequently, the relay is introduced as a bridge for
data offloading between the users and the network computation
points. Furthermore, a game-based incentive-driven offloading
mechanism is designed by analyzing and balancing the cost and
gain factors of three main entities (users, relays, and network
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computation points). Considering the interactions among the
entities, a two-level Stackelberg game is established for efficiently
allocating potential computation resource, as well as balanc-
ing the utility conflicts due to the data offloading. Given the
hierarchical interaction structure, the upper level game involves
network computation points as followers and the relay as a leader,
while the lower level game includes the relay as a follower and
users as leaders. Moreover, to facilitate applicability in large-
scale scenarios with multiple relays, we decompose multiple
relays into multiple single relay problems using a tripartite
matching strategy that assigns appropriate relays to users and
network computation points. The simulation results demonstrate
the effectiveness of the proposed game-based incentive-driven
mechanism and show that it outperforms the baselines in terms
of the overall utilities of the involved entities and the average
energy consumption of users.

Index Terms— Incentive-driven, IoT, mobile computing, task
offloading, network computation points, idle resources, Stackel-
berg game.

I. INTRODUCTION

THE growth of communication bandwidth and the pop-
ularization of IoT devices have together promoted the

emergence of various mobile computing applications with
complex tasks and intelligent analysis, including agriculture,
healthcare, finance, and other fields. According to the “Data
Age 2025” white paper published by International Data Cor-
poration (IDC) [1], the global data amount is predicted to
reach 175ZB in 2025, which is 10 times more than today.
To explore the value of this data for more scalable computing
applications, new computing paradigms have been proposed.
Among them, fog/edge computing [2] is envisioned as a
promising and feasible technology to alleviate the computation
and communication pressure. By migrating computation from
the cloud to edge servers, it can provide IoT devices with low
latency and context-aware services. However, in real-world
scenarios [3], practically challenging situations (e.g., traffic
jams, natural disasters) are common. Fixed infrastructures used
for communication or computation are often overloaded or
even unavailable, making it impossible to effectively perform
computation tasks in the corresponding area. For example,
when traffic jams occur, cameras at intersections need to
capture more information (e.g., video streams) than usual for
traffic flow analysis and monitoring [4], resulting in inefficient
road traffic management services.

Introducing additional facilities such as edge servers
[5], [6], [7] can be a viable option to solve the above
problems. However, the surge in traffic is often accidental
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and only occurs within a short period, causing computation
resource wastage and limiting the scalability of the services.
In disaster scenarios, the infrastructure may fail to provide
services or even be destroyed, and it is difficult to deploy
new network infrastructures in time. There are also some
efforts [8], [9], [10], [11] using the delay tolerant network
(DTN) to perform small-scale message transmission when
infrastructure-based communication is unavailable. However,
current common computation tasks, such as AR and real-
time video analysis, are computation-intensive and require
stringent response latencies. The adoption of DTN will make
bandwidth a serious bottleneck and it is difficult to support
the offloading and distribution of complex computation tasks
for a large number of users. The aforementioned existing
schemes are not adequate in providing scalable computation
and communication support in many challenging scenarios.
Therefore, it is essential to develop a flexible, scalable, and
adaptable service framework that can effectively supplement
cloud and edge computing to overcome the problem of urgent
computation and communication resource exhaustion.

Recently, dispersed computing [12] has gained attention
to migrate computation from the edge to local devices. This
computing paradigm takes advantage of massive and dispersed
IoT devices with idle resources to satisfy the computation
demands of nearby devices. Based on the concept of the
dispersed paradigm, we find that the increasing number of IoT
devices involved in challenging scenarios can provide more
available computation and communication resource, implicitly
helping to relieve the pitfalls of fog/edge computing mentioned
above. Moreover, when fixed service infrastructures and facil-
ities are unavailable, inter-device assistance can be used to
support computational applications. Inspired by these insights,
this paper attempts to explore the idle computation resources
scattered across devices in challenging scenarios. For large-
scale outdoor events such as celebrity concerts and festival
parties, mobile phones or computers charged at night in nearby
residential areas, and even devices that are not in use on-site
can be fully or partially utilized to relieve the pressure on
infrastructure.

From a high-level view, we propose a dispersed ser-
vice framework to facilitate computation and communication
resource utilization that involves three main entities: network
computation points (NCPs), relays, and users. Relays (such as
drones or communication vehicles) are introduced as a bridge
between the users generating offloading requests and the NCPs
with idle resources. However, designing such a framework
faces the following challenges:

• NCPs with idle resources are typically self-interested
personal devices. Therefore, the challenge is how to
incentivize them to actively participate in offloading
services to alleviate computational load.

• NCPs exhibit variations in computation capabilities, and
the challenge here is how to manage these idle resources
in a strategic manner.

• The next subsequent challenge is how to effectively
maximize the overall utilities of the three main entities
while balancing their conflicts of interest.

• Another significant challenge is how to efficiently allo-
cate appropriate relays to users and NCPs for achieving
the best matching in large-scale scenarios with multiple
relays.

To address the challenges mentioned above, we propose a
novel game-based incentive-driven dispersed offloading mech-
anism that can handle both single-relay and multi-relay scenar-
ios. For single-relay scenarios, we create a two-level Stackel-
berg game that incentivizes NCPs to exploit idle resources
in providing offloading services to users. For multi-relay
scenarios, we introduce a tripartite matching strategy based
on a dual matching game to assign appropriate relays to users
and NCPs, thus decomposing the complex multi-relay problem
into multiple single-relay problems in a tractable way.

In summary, the main contributions of this paper are as
follows:
• We propose a dispersed computing framework for

offloading that addresses urgent computation and com-
munication resource exhaustion. Compared to existing
schemes [5], [6], [7], [8], [9], [10], [11], the proposal
focuses on the use of potential idle resources and can
respond to the unavailability of infrastructure due to man-
made and natural disasters, which is an important and key
contribution of this work.

• Compared to existing dispersed computing [13], [14],
[15], [16] techniques without considering the selfishness
of NCPs, we focus on multi-user and multi-NCP situ-
ations, incentivizing NCPs to participate in offloading
services in a trading pattern. Furthermore, a two-level
stackelberg game is established to balance the conflicting
interests of the three entities (i.e., users, relays and
NCPs), and the existence and uniqueness of the equi-
librium are proved.

• UAVs and unmanned communication vehicles are intro-
duced as relays to cope with large-scale scenarios and
long-distance communication. Moreover, matching games
are used to achieve efficient and logical relay allocation
and a tripartite matching strategy is proposed.

• We evaluate the performance of the proposed algorithms
compared with baselines. The results verify the feasibility
and advantages of our proposal in terms of overall util-
ities. Moreover, the proposed scheme achieves the best
energy-saving effect on users’ average energy consump-
tion.

The rest of this paper is organized as follows. Section II
provides the literature review. Section III describes the system
model and the game formulation. In Section IV, we analyze
the interactions between the three main entities for both
single-relay and multi-relay scenarios. Section V presents the
performance evaluation and Section VI concludes the paper.

II. RELATED WORK

Mobile computation offloading technology is receiving
attention to alleviate the overloaded computation demands. For
example, Chen et al. [17] studied task offloading in ultra-dense
networks. To minimize the delay and energy consumption of
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users, an efficient offloading scheme was proposed. A com-
puting offloading method called COM [18] was designed to
support cloud-edge computing of the Internet of Things. Zhao
et al. [19] proposed a collaborative method based on mobile
edge computing and cloud computing to offload services to
automobiles in vehicular networks. However, the technologies
mentioned above cannot effectively respond to the sudden
increase in computing load caused by accidental emergencies
due to their dependencies on infrastructures. To improve the
flexibility of offloading, Zhang et al. [20] investigated a UAV-
assisted multi-access edge computing system consisting of a
flying UAV and a ground base station serving multiple ground
mobile devices. Mithun et al. [21] designed a task offloading
strategy in a UAV-based MEC system, where the end-user
offloads computation intensive tasks to the UAV. The utiliza-
tion of UAVs has increased the flexibility of edge offloading,
yet their expensive cost cannot be overlooked. In addition, the
above solutions are limited to dedicated equipment, ignoring
the large amount of potentially available idle resources.

For emergency scenarios, delay tolerant network (DTN)
is applied. For example, Mao et al. [8] designed a routing
protocol called scheduling probability, which uses encounter
history and transitivity. Taking into account the bandwidth and
storage limitations, Wu et al. [9] proposed a photo selection
algorithm for DTN to maximize the value of photos delivered
to the command center. Datta et al. [10] developed a scheme
to dynamically update the POIs list based on the current photo
metadata. By sending important photos of POIs, the consump-
tion of bandwidth, energy, and node storage is reduced, which
is suitable for disaster recovery scenarios. A delay-tolerant
network disaster information system based on a mobile cloud
wireless grid was proposed in [11], which has high mobility
and multi-platform integration capability. The above studies
are feasible in resource-limited environments. However, due to
the high intermittency of nodes in the DTN network, as well
as the limited bandwidth and storage, the prompt data delivery
cannot be guaranteed. Furthermore, it is limited to short-term
emergency handling in specific situations and is not suitable
for future use in large-scale scenarios (e.g., concerts).

With the enhancement of computation power of smart
devices, the idea of dispersed computing has drawn atten-
tion [13], [14], [15]. Dispersed computing [12] is regarded
as a computing paradigm that fully explores and utilizes idle
resources in the network, providing services to users as a sup-
plement when the edge is overloaded. For example, a run-time
scheduling software worker for decentralized computing was
developed in [14]. It can deploy pipeline computation in the
form of directed acyclic graphs across multiple geographically
dispersed computation points. Ghosh et al. [15] designed a
container orchestration architecture for dispersed computing.
The system automatically and efficiently assigns tasks among
a set of network computation points. Wu et al. [16] proposed
a distributed computing offloading framework that considers
user interests and network computation points. It contributes to
energy saving of mobile devices by making full use of idle and
geographically dispersed computation resource through task
offloading. These efforts work well to exploit the potential idle
computation resource in the network, but the proper incentive

Fig. 1. The dispersed service framework with game-based incentive-driven
offloading designs.

scheme is not well addressed to encourage the participation
of individual devices. In this paper, we take into account
time delays, energy consumption, user satisfaction and close-
to-reality transactions that can flexibly respond to sudden
and urgent resource exhaustion in challenging scenarios. It is
therefore an appropriate complement to existing technologies.

III. OFFLOADING PROBLEM FORMULATION

A. System Overview

As illustrated in Fig. 1, the dispersed service framework
defines three main entities. (1) Network computation points
(NCPs)1 have idle computation resource, such as mobile
phones charged at night and laptops in standby mode.
(2) Relays provide communication relay for computation
offloading. In practice, the relays can be drones sent by the
government in emergencies or communication vehicles of
Internet service providers (ISPs) for mobile communications.

1The reliability of NCPs can be ensured through the use of blockchain
technology. Specifically, a smart contract could be created to require NCPs
involved in the offloading service to submit deposits on the blockchain as
the participation fees. If they successfully complete the offloading task, the
deposits will be credited to their account along with the rewards. Otherwise,
the deposits will be taken away. By doing so, the NCPs are incentivized to
effectively ensure their reliability (involving equipment, networks, etc.) for
rewards. However, when the deposits are smaller than the incentive rewards,
NCPs may have an incentive to provide ineffective offloading services or
engage in unreliable activities. To solve this problem, the required deposits
should be substantially larger than the rewards offered for a specified period.
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TABLE I
SYSTEM MODEL PARAMETER DEFINITIONS AND NOTATIONS

(3) Users refer to various IoT devices that perform partially
offloadable computation-intensive tasks, i.e. data, but have
limited resources. The users are the requesters of offloading
services, such as security cameras in concert halls executing
face recognition functions, traffic cameras performing video
stream analysis during rush hours, and mobile phones playing
various games. In Fig. 1, ①-④ describe the incentive-driven
flow among three main entities, and ⑤-⑧ represent the actual
offloading process. We define the sets of NCPs, the sets of
relays and the sets of users as M = {1, . . . , j, . . . ,M}, K =
{1, . . . , k, . . . ,K} and N = {1, . . . , i, . . . , N}, respectively.

Without loss of generality, we assume that the locations of
the NCPs and users may change over time, but they are fixed in
a specific period [22]. Moreover, each relay supports multiple
NCPs and users, while users and NCPs can be associated
with only one relay. The location of each node is assumed
to be known (e.g., by using GPS [23] or some positioning
methods). The important parameters and descriptions are given
in TABLE I.

B. Cost Factors

In our communication model, we adopt Orthogonal Fre-
quency Division Multiple Access2 (OFDMA) technology [26]
as the communication mode of data transmission to avoid
mutual interference between links. Hence, the uplink rate
vkj of the link between relay k and device (NCP or user)
j can be expressed as vkj = Bkj log(1 + ptgkj

σ2 ), where
Bkj = Btotalk /(|M |+|N |) is the bandwidth allocated to device
j by relay k. Here, Btotalk denotes relay k’s total bandwidth,
and |M |+ |N | represents the total number of NCPs and users
associated with relay k. gkj = 1/dψkj indicates the channel
gain, where dkj is the distance between the relay k and device
j, and ψ denotes the path loss index. pt and σ2 are the
transmission power and constant noise power, respectively.

1) Delay: The processing of the offloading data for each
user contains the processes of transmission and computation,
which consists of five delay periods (see Fig. 3): a. The
transmission delay of data offloading from user i to relay k
is defined as τik = xi/vik. Here, user i offloads xi amount
of data to relay k, denoted by vector x ≜ (xi : ∀i ∈ N ).

2Following [24] and [25], the sub-channel allocation for OFDMA in
this paper is flexibly chosen between centralized and distributed approaches
depending on the actual situation.

Fig. 2. An illustration to the two-level Stackelberg game combined with
matching game process for game-based incentive-driven mechanism.

Fig. 3. An illustration of five delay periods.

Note that the computational overload occurs here due to
the fact that users are clustered together in the scenarios of
interest in this work, such as traffic congestion and festival
parties. Hence, for simplicity, we consider that the channel
gain gik between all users and relay k is reciprocal (uplink and
downlink channel gains are the same). b. The relay forwarding
delay of offloading data to NCP j ∈ M for processing is
defined as τkj = yj/vkj . Here, yj is the amount of offloading
that NCP j would like to provide, defined as vector y ≜ (yj :
∀j ∈ M). It is worth noting that after the relay receives the
offloading data from all users, the data needs to be strategically
assigned to the NCPs for processing to meet the conditions
yj ≤ ymaxj and

∑N
i=1 xi ≤

∑N
j=1 yj . c. The computation

delay of data in NCP j can be denoted by τj = ωyj/fj ,
where ω is the required CPU cycles per bit [27] and fj is NCP
j’s parallel computation capability without queuing time. d.
The result-return delay of NCP j transmitting the computation
results to relay k can be expressed by τjk = θyj/vjk, where θ
is the ratio of output data size to input data size. e. The result-
return delay of relay k transmitting the computation results to
user i is defined as τki = θxi/vki. Thus, we can denote the
total delay in obtaining results for user i as T totali shown in
Fig. 3.

2) Energy Consumption: Based on the delay model above,
the transmission energy consumption and result-return energy
consumption can be formulated as Eik = ptτik, Ekj = ptτkj ,
Ejk = ptτjk and Eki = ptτki. The computation energy
consumption of data in NCP j can be defined as Ej =
Power(fj)

ωyj

fj
, where Power(fj) = µfαj is the speed-power

curve function [28] of processors, and µ and α = 3 [28] are
the device-related parameters.
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C. Utility Maximization of Three Main Entities

We first model the interactions among NCPs, a single relay,
and users as a two-level Stackelberg game. Then, a dual match-
ing game is introduced for multi-relay scenarios, allowing the
multiple relays to be decomposed into multiple independent
single-relay problems, as shown in Fig. 2.

1) The Utility of NCPs: Driven by the incentive mechanism,
each NCP contributes its idle computation resource to provide
users with offloading services. The utility function of NCP j
consists of two parts: the reward paid by relay k and the cost
due to providing computation and communication services.
The reward function is characterized by a logarithmic function
[29] as Rncpj (yj , q) = qln(1 + yj), where q is the purchase
price determined by relay k. The cost function of NCP j
is represented by Cncpj (yj , q) = a(Ej + Ejk), where a is
the positive energy cost coefficient. Thus, the optimization
problem for NCP j can be formulated as follows:

max
yj

Uncpj (yj , q) = Rncpj (yj , q)− Cncpj (yj , q),

s.t. C1 : 0 ≤ yj ≤ ymaxj ,

C2 : Ej + Ejk ≤ Emaxj ,

C3 : τkj + τj + τjk ≤ τmaxk . (1)

Constraint C1 ensures that the amount of offloading data
available from each NCP does not exceed its maximum
value ymaxj . Moreover, the maximum energy that each NCP
consumes is limited, and the computation results must be
returned to the relay in time. Thus, constraints C2 and C3
are applied to meet these requirements.

2) The Utility of Relays: Each relay k is designed to act as
a broker for offloading between NCPs and users. Specifically,
the relay receives payments Rrelayk (x,P ) =

∑N
i=1 Piln(1 +

xi) from the users, which are used to purchase the NCPs’
computation resource and cover its forwarding cost, i.e.,
Crelayk (x,y, q) =

∑M
j=1[qln(1 + yj) + aEkj ] +

∑N
i=1 aEki.

Rrelayk (x,P ) is the total reward given by the users, where
Pi is the purchase price of user i, denoted by a vector as
P ≜ {Pi : ∀i ∈ N}. Crelayk (x,y, q) denotes the relay’s cost

function, where
∑M
j=1[qln(1+yj)+aEkj ] represents the total

price paid to the NCPs and the total cost of data offloading,
while

∑N
i=1 aEki describes the cost that the relay incurs to

return the final results to users. The relay determines its
purchase price q and the amount of offloading x available to
users based on the optimal users’ pricing P ∗ and the optimal
amount of offloading y∗ available from NCPs. By deciding
the optimal values of q and x to maximize its utility, we can
describe the optimization problem of relay k as follows:

max
x,q

Urelayk (x,P ,y, q) = Rrelayk (x,P )− Crelayk (x,y, q),

s.t. C1 : 0 ≤ xi ≤ xmaxi ,

C2 : 0 ≤ q ≤ qmax,

C3 :
N∑
i=1

xi ≤
M∑
j=1

yj ,

C4 :
N∑
i=1

Eki +
M∑
j=1

Ekj ≤ Emaxk . (2)

C1 ensures that the amount of offloading provided by the
relay do not exceed the user’s maximum demand. C2 rep-
resents the upper and lower bounds of the purchase price.
C3 implies that the total amount of offloading provided by the
relay cannot exceed the total amount of offloading provided
by the NCPs. C4 means that the relay must have enough
remaining energy to maintain its operation.

3) The Utility of Users: The users need to offload the data
to NCPs through relays to achieve computation offloading.
The utility function for user i consists of two parts: the user
satisfaction with the offloading service and the total offloading
cost. The satisfaction function of user i can be modeled as a
function of the available offloading amount xi and defined as
follows:

Suseri (x) = bixi − hi(xmaxi − xi)2 +
∑
i̸=i′

I(li,i′)xixi′ , (3)

where Suseri (x) is monotonically increasing with xi, and the
coefficients bi > 0 and hi > 0 capture the intrinsic demand
rate [30]. Specifically, bi measures the user’s sensitivity to the
received data xi. The coefficient hi evaluates user i’s maxi-
mum demand satisfaction. The term

∑
i̸=i′ I(li,i′) denotes the

(positive) network effect [31] that user i obtains from other
users. It implies that other users in the area receive a high
amount of offloading can improve the social satisfaction of
the current user. In other words, when users receive better
offloading services, there is a positive mutual influence on
each other, contributing to overall social satisfaction. I(li,i′)
is an increasing function related to the user contact strength
parameter li,i′ , satisfying I(·) ≥ 0. However, in fact, this
social effect cannot increase without limit. Therefore, based
on the literature [32], here we assume

∑
i̸=i′ I(li,i′) < hi.

Furthermore, the total cost including the price paid to the
relay, offloading energy consumption, and local computation
energy consumption can be expressed as Cuseri (x, Pi) =
Piln(1 + xi) + a(Eik + µf2

i ω(xmaxi − xi)).
Hence, through the game with other users and feedback

from relay k, the optimization problem of user i can be defined
as follows:

max
Pi

Uuseri (Pi|P ∗−i,x) = Suseri (x)− Cuseri (x, Pi),

s.t. C1 : 0 ≤ Pi ≤ Pmaxi ,

C2 : τik + τki + τmaxk ≤ Tmaxuser , (4)

where P ∗−i = {P ∗1 , P ∗2 , . . . , P ∗N} denotes the optimal pricing
of all users except user i. C1 means that Pmaxi is the upper
bound on Pi. C2 ensures that the computation results should
be returned within the user’s acceptable delay.

IV. ANALYSIS AND SOLUTIONS

We analyze the interactions between the three main entities
for both single-relay and multi-relay scenarios. For single-
relay scenarios, the interactions are formulated as a two-level
Stackelberg game. The relay is acted as a bridge between the
users and the NCPs. Specifically, an upper level Stackelberg
game consisting of the NCPs as followers and the relay
as a leader is constructed in IV-A. Then, a lower level
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Stackelberg game consisting of the relay as a follower and
the users as leaders is constructed in IV-B. For multi-relay
scenarios, we decompose the multi-relay problem into multiple
independent single-relay problems via a dual matching game
as presented in Section IV-C.

A. The Upper Level of Stackelberg Game

The relay guides the NCPs (offloading service providers)
in determining the amount of offloading available through its
purchase price. The upper level game thus consists of the
NCPs as followers and the relay as a leader.

1) NCPs (Determining the Amount of Offloading Available):
We can find that the second-order derivative with respect to
yj is ∂2(Uncpj )/∂y2

j = −q
(1+yj)2

< 0, which proves that Uncpj

is concave. Thus, the optimization problem for NCP j in
(1) is a standard convex problem. Then, the problem can be
transformed into an unconstrained optimization problem using
the Lagrangian duality method, as follows:

Lncpj (yj , q, λj , βj , γj) = Uncpj (yj , q) + λj(ymaxj − yj)
+βj(Emaxj − Ej − Ejk)
+ γj(τmaxk − τkj − τj − τjk), (5)

where λj , βj , and γj are the Lagrangian dual variables
corresponding to constraints C1, C2 and C3, respectively.
When the purchase price q is given, the problem satisfies the
Karush-Kuhn-Tucker (KKT) conditions [33]. Then, we set the
derivative of Lncpj with respect to yj to zero, and the optimal
response y∗j of NCP j can be obtained by

y∗j =
q

Vj
− 1,

Vj = (a+ βj)(µf2
j ω +

θpt

vjk
) + λj + γj(

1
vkj

+
ω

fj
+

θ

vjk
).

(6)

According to (6), it can be observed that the optimal
response yj of NCP j with a fixed price q depends on the the
dual variables λj , βj and γj . We can update the dual variables
by solving the dual problem of (5), which is described as
follows:

min
λj ,βj ,γj

D(λj , βj , γj),

s.t. λj ≥ 0, βj ≥ 0, γj ≥ 0. (7)

Clearly, the dual problem is a convex optimization problem,
and therefore we can use sub-gradient [34] method to solve
it. The sub-gradient of the dual equation D(λj , βj , γj) can be
obtained as follows:

∂D

∂λj
= ymaxj − y∗j ,

∂D

∂βj
= Emaxj − µjf

2
j ωy

∗
j −

θy∗j p
t

vjk
,

∂D

∂γj
= τmaxk −

y∗j
vkj

−
ωy∗j
fj

−
θy∗j
rjk

, (8)

where y∗j is the optimal solution given q and the dual variables
λj , βj , and γj .

From (7), the Lagrangian dual variables are updated accord-
ing to the following formula

λ
(η+1)
j = [λ(η)

j − α
(η)
1 (

∂D

∂λj
)(η)]+,

β
(η+1)
j = [β(η)

j − α
(η)
2 (

∂D

∂βj
)(η)]+,

γ
(η+1)
j = [γ(η)

j − α
(η)
3 (

∂D

∂γj
)(η)]+, (9)

where η is the number of iterations, α(η)
1 , α(η)

2 and α
(η)
3

are non-negative steps. The Lagrangian dual variables are
iteratively updated until the given convergence conditions
are achieved. The detailed procedure for obtaining the best
response y∗j of NCP j ∈M is shown in Algorithm 1.

Algorithm 1 The Best Response y∗j of NCP j ∈ M for
Given q

Input: q, ε1

Output: y∗j
1 Initialization: η = 0, y0

j , λ
(0)
j , β

(0)
j , γ

(0)
j ;

2 repeat
3 Update y

(η+1)
j = q

Vj
− 1 in (6);

4 η = η + 1 ;
5 Update λ

(η)
j , β

(η)
j , γ

(η)
j according to (9);

6 until
∣∣∣λη

j − λη−1
j

∣∣∣ < ε1 ∩
∣∣∣βη

j − βη−1
j

∣∣∣ < ε1 ∩
∣∣∣γη

j − γη−1
j

∣∣∣ < ε1;

7 y∗j = y
(η)
j ;

8 return y∗j

2) Relay (Determining the Purchase Price and the Amount
of Offloading Offered to Users): We first prove the existence
and uniqueness of optimal solutions for optimization problem
of the relay.

Definition 1 (Uniqueness Condition): Given that a problem
is a concave maximization problem, it is unique if the solution
exists [35].

Theorem 1: The optimization problem of relay k has a
unique optimal solution (x, q).

Proof: We first observe that the Hessian matrix of
Urelayk (x,P ,y, q) with respect to x and q is

H =
[
Hx 0
0 Hq

]
, (10)

where

Hx = [
∂2Urelayk

∂xi∂xi′
]i,i′∈N

= −diag
(

P1
(1+x1)2

, . . . , PN

(1+xN )2

)
< 0.

For Hq , substituting yj = q
Vj
−1 into Urelayk , we can derive

Urelayk = Rrelayk −
M∑
j=1

[qln(
q

Vj
) +

apt( qVj
− 1)

vkj
]−

N∑
i=1

aEki.

(11)

Then, the second derivative of (11) with respect to q is
Hq = ∂2Urelay

k

∂q2 = − |M |
q < 0. Based on Hx and Hq , H

is negative definite and Urelayk is concave. According to the
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convexity of its constraint conditions and Definition 1, it is
proved that the optimization problem of relay k has a unique
optimal solution.

Then, the Lagrangian function associated with the relay k
can be written as

Lrelayk (x,P ,y, q,λ, β, γ, δ)

= Urelayk (x,P ,y, q)− β(q − qmax)

−
N∑
i=1

λi(xi − xmaxi )− γ(
N∑
i=1

xi −
M∑
j=1

yj)

− δ(
N∑
i=1

θxip
t

vki
+

M∑
j=1

yjp
t

vkj
− Emaxk ). (12)

Using the KKT conditions, we can derive the optimal
offloading amount allocation of relay k as

xi(Pi, P−i) =


0 Pi < Pmini ,
Pi
V ′

− 1 Pmini ≤ Pi ≤ Pmaxi ,

xmaxi Pi > Pmaxi ,

(13)

where V ′ = θ(apt + δpt)/vki + γ, Pmini = V ′, and Pmaxi =
V ′(1 + xmaxi ). Moreover, the purchase price q of relay k can
be expressed as

q = ez, where z =

∑M
j=1[(ln(Vj)− (a+δ)pt

vkjVj
+ γ
Vj
− 1)]−β

|M |
.

(14)

The best response of relay k is jointly affected by the
responses of NCPs (Algorithm 1) and users (Algorithm 3).
The iterative solution process performed by relay k is shown in
Algorithm 2. Note that when the game reaches an equilibrium,
the iterations for finding the best responses converge and
terminate.

Algorithm 2 The Relay k’s Best Response q∗ and x∗

Input: The prior knowledge: ϵ2
Output: The optimal purchase price q∗ and the optimal offloading

amount x∗
1 Initialization: q0 ∈ [0, qmax], t = 0, Urelay

k (t);
2 repeat
3 Collect the best response y∗ from NCPs using Algorithm 1;
4 Collect the best response P ∗ from users using Algorithm 3;
5 Solve q∗ = ez in (14) and x∗ in problem (13) using the interior

point algorithm [36];
6 Calculate Urelay

k (t + 1) according to (2);
7 t = t + 1;
8 until |Urelay

k (t)− Urelay
k (t− 1)| < ϵ2;

9 return q∗, x∗

B. The Lower Level of Stackelberg Game

The users (offloading service requesters) guide the relay to
determine the amount of offloading offered to them through
pricing. Thus, the lower level game consists of the users as
leaders and the relay as a follower.

1) Users (Pricing): First, all users inform relay k an initial
pricing strategy based on their information, and then receive
the response xi(Pi,P−i) from relay k in IV-A.2). After that,
the user’s utility function will be updated as follows:

Uuseri (xi(Pi,P−i), Pi) = Suseri (xi(Pi,P−i))
−Cuseri (xi(Pi,P−i), Pi). (15)

Moreover, the user’s optimal pricing depends on the
response of relay k and is also affected by other users’
pricing strategies. Since the total amount of offloading
provided by the relay is limited, there is price competi-
tion among users, forming a non-cooperative game G ={
N , {Pi}i∈N , {Uuseri }i∈N

}
. To obtain the equilibrium solu-

tion of the non-cooperative game, the concepts of existence
and uniqueness of Nash equilibrium are first introduced.

Theorem 2: The non-cooperative game G between users
has a Nash equilibrium [37].

Proof: For user i ∈ N , x(Pi,P−i) obtained from the relay
is substituted into the utility function Uuseri (x(Pi,P−i), Pi),
and is shown as follows:

Uuseri (xi(Pi,P−i), Pi)

= bi(
Pi
V ′

− 1)− hi(xmaxi − (
Pi
V ′

− 1))2

+
∑
i̸=i′

I(li,i′)(
Pi
V ′

− 1)(
Pi′

V ′
− 1) +

apt

vik

−Piln(
Pi
V ′

)− aPip
t

V ′vik
−aµf2

i ω(xmaxi − Pi
V ′

+ 1). (16)

According to the formulation above, the first-order deriva-
tive of (16) is

∂Uuseri

∂Pi
=

(2xmaxi hi + bi + 2hi)
V ′

− 2Pihi
(V ′)2

− ln(
Pi
V ′

)

+
∑
i̸=i′

I(li,i′)(Pi′ − V ′)
(V ′)2

− apt

V ′vik
+ a

µf2
i ω

V ′
− 1.

(17)

Then, we can obtain the second-order derivative as follows:

∂2(Uuseri (xi(Pi,P−i), Pi))
∂P 2

i

= −(
2hi

(V ′)2
+

1
Pi

). (18)

Since hi > 0 and Pi > 0, the second derivative is nega-
tive and the utility function is a strictly concave. Therefore,
the Nash equilibrium of non-cooperative game G exists and
Theorem 2 is proved.

Theorem 3: There is a unique Nash equilibrium in non-
cooperative game G.

Proof: The Jacobian matrix ∇Uuser(P ) with respect to
P is defined by −(Λ − L). The matrix Λ = diag( 2h1

(V ′)2 +
1
P1
, 2h2

(V ′)2 + 1
P2
, . . . , 2hn

(V ′)2 + 1
Pn

) and matrix L is expressed by

L =
1

(V ′)2


0 I(l1,2) · · · I(l1,n)

I(l2,1) 0 · · · I(l2,n)
...

...
. . .

...
I(ln,1) I(ln,2) · · · 0

 .
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According to the assumption
∑
i̸=i′ I(li,i′) < hi in (3),

it can satisfy the following constraint,

(Λ− L)n,n =
2hn

(V ′)2
+

1
Pn

>
hn

(V ′)2
>

∑
i̸=n

I(li,n)
(V ′)2

=
∣∣∣∑
i̸=n

(Λ− L)i,n
∣∣∣, (19)

where (Λ−L)i,n denotes the element in the ith row and nth

column of the matrix (Λ− L).
We find that (Λ−L) is strictly diagonally dominant. Since

I(li,i′) = I(li′,i) ∀i, i′ ∈ N , it is clear that (Λ − L) is
symmetric. Then, the corresponding (Λ − L)T is strictly
diagonally dominant, and (Λ−L) + (Λ−L)T is also strictly
diagonally dominant. Based on the above, it can be seen that
−(Λ−L)− (Λ−L)T is negative definite and ∇Uuser(P ) is
diagonally strictly concave. Thus, the non-cooperative game
G has a unique Nash equilibrium. The proof of Theorem 3 is
completed.

To sum up, after each user i ∈ N collects relay k’s
response, its optimal pricing P ∗i can be derived by solving
∂Luser

i (xi(Pi,P−i),Pi,λi,βi)
∂Pi

= 0, where

Luseri (xi(Pi,P−i), Pi, λi, βi)
= Uuseri (xi(Pi,P−i), Pi)
−λi(Pi − Pmaxi )− βi(τik + τki + τmaxk − Tmaxuser ).

(20)

Thus, given P−i, the optimal pricing strategy for user i is

P ∗i = argmax
Pi

Luseri (xi(Pi,P−i), Pi, λi, βi). (21)

It is intractable to directly obtain the closed-form solution
given the above function. To obtain the equilibrium solution,
we design a distributed dynamic adaptive algorithm. Each user
i ∈ N plays multiple iterations of the game to obtain a optimal
pricing strategy. When all users in the network can no longer
improve their utilities by updating their strategies individually,
the non-cooperative game achieves a Nash equilibrium. The
specific solution process3 performed by user i ∈ N is shown
in Algorithm 3.

Algorithm 3 The Best Response P ∗i of User i ∈ N for
Given x

Input: The prior knowledge: x, ϵ3.
Output: The optimal pricing P ∗i for user i.

1 Initialization: t = 0, P max
i , Pi(0) ∈ [0, P max

t ];
2 Collect the best response x∗ from the relay k;
3 repeat

4 Pi(t + 1) = Pi(t) + αi ·
∂Luser

i
∂Pi

∣∣∣∣
Pi(t)

, αi is the adjustment step

of the pricing strategy;
5 t = t + 1;
6 until |Pi(t)− Pi(t− 1)| < ϵ3;
7 P ∗i = Pi(t);
8 return P ∗i

3The theoretical complexity of the gradient descent method used in Algo-
rithm 3 is O(log( 1

ε3
), where ε3 is the target accuracy. Furthermore, the game

algorithm satisfies convergence and converges to a unique equilibrium point
according to the convergence proof in §2 of [38].

Based on the above analysis and proof, we can conclude
with the following theorem.

Theorem 4: The equilibrium solution (q∗,y∗,P ∗,x∗) of
the two-level Stackelberg game exists and is unique.

Proof: Through the analysis of IV-A and the optimal solu-
tion shown in (6), it can be concluded that NCPs (the follow-
ers in the upper game) have unique optimal responses y∗ to the
purchase price q∗ of relay k. According to Theorem 3, there
exists a unique Nash equilibrium P ∗ in the non-cooperative
game of users (the leaders in the lower game). Furthermore,
given y∗ and P ∗, relay k (as the leader in the upper game)
has a unique optimal purchase price q∗. Meanwhile, relay k
(as the follower in the lower game) has a unique optimal
offloading amount x∗ that can be offered to users (as proved
in Theorem 1). Thus, there is a unique equilibrium solution
(q∗,y∗) for the upper level Stackelberg game and a unique
equilibrium solution (P ∗,x∗) for the lower level Stackelberg
game. In conclusion, the equilibrium solution (q∗,y∗,P ∗,x∗)
of the two-level Stackelberg game exists and is unique,
and can be obtained by the proposed algorithms (including
Algorithms 1, 2, and 3).

C. Multiple Relays

Multiple relays can expand the coverage of the framework
and provide services to a larger number of users. However,
they will compete for the limited computation resource of
NCPs and influence the users’ decisions. Given that vari-
ous relays have different bandwidths, geographic locations,
and limitations on the number of users and NCPs that can
be accommodated, it is a challenging problem to achieve
a balance among NCPs, users, and relays. To address this
problem, we decompose multiple relays into several single-
relay problems and solve them using a dual bilateral matching
game.

1) Matching Concepts: We model the associations among
three main entities as a dual one-to-many matching game
with resource constraints, where the players are the NCP set
M, the relay set K, and the user set N . Specifically, in the
first bilateral matching game, each relay acts as a seller and
NCPs act as buyers, while in the second bilateral matching
game, each relay acts as a seller and users act as buyers. It is
important to note that the matching is bilateral, meaning that
a given NCP (or user) is admitted to a relay only if the relay
admits that NCP (or user). The matching game (e.g., the first
bilateral matching game) is formally defined as follows.

Definition 2: Given two disjoint finite sets of players M
and K, a one-to-many matching function Ψ [39] is defined
such that for all j ∈M and k ∈ K.

(i) Ψ(j) ∈ K and|Ψ(j)| ∈ {0, 1},
(ii) Ψ(k) ⊆M and |Ψ(k)| ≤Mmax

k ,
(iii) Ψ(j) = k ⇔ Ψ(k) = j.
Thus, the matching game Ψ can be defined by a tuple

{M,K,Mmax
k ,≻j ,≻k}, where Mmax

k is the maximum num-
ber of NCPs that can be associated with a relay k. The
preference relations of NCPs and relays are represented by ≻j
and ≻k, respectively. Condition (i) implies that each NCP can
only be associated with one relay, while condition (ii) specifies

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:44:26 UTC from IEEE Xplore.  Restrictions apply. 



4042 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 7, JULY 2023

Fig. 4. Tripartite matching strategy.

the maximum number of NCPs that can be associated with
each relay. Condition (iii) states that if an NCP j is matched
with a relay k, then k is also matched with j. The output
of this game is a set of matching pairs < j, k >j∈M,k∈K
between NCPs and relays. The second bilateral matching
game Φ = {N ,K, Nmax

k ,≻i,≻k} between relays and users
is defined in a similar manner, where Nmax

k is the maximum
number of users that can be associated with a relay k. The
same conditions and output apply to the matching game Φ.

2) Preference Profiles of Players: In the proposed game
Ψ, each player uses a preference profile to rank the other
players, which serves as a reference for subsequent matching.
Specifically, each NCP j and relay k can generate their
preference lists Lncpj and Lncpk based on their respective
preference profiles.

Definition 3: The preference profile Prej(k) of NCP j
for different relays can be mathematically expressed as
Prej(k) = Btotal

k

Mmax
k

+qmaxk . For the NCPs, a relay with a larger

total bandwidth, a smaller receivable quantity and a higher
purchase price cap is preferred.

Definition 4: The preference profile Prek(j) of relay k for
different NCPs can be defined as Prek(j) = ymaxj − djk. For
the relays, an NCP that can provide high amounts of offloading
while being geographically close to it (i.e. better transmission
and lower latency) is preferred.

In the game Φ, users and relays generate preference lists
Luseri and Luserk based on the following preference profiles.

Definition 5: The preference profile Prei(k) of user i for
different relays can be mathematically expressed as Prei(k) =
Btotal

k

Nmax
k

. For the users, a relay with sufficient bandwidth and less
matching capacity is preferred.

Definition 6: The preference profile Prek(i) of relay k for
different users can be defined as Prek(i) = Pmaxi − dik.
For the relays, a user with a higher purchase price cap and
geographical proximity is preferred.

3) Tripartite Matching Strategy: As illustrated in Fig. 4,
the tripartite matching process combines Algorithm 4 and
Algorithm 5 to solve the matching problem among the
three main entities, and iteratively achieves the final stable

Algorithm 4 Preference List Generation for Each NCP
(or User)

Input: unmatched NCP set Lncp
unmatched = M, unmatched user set

Luser
unmatched = N , relay set K, the preference lists of NCPs

Lncp (or Luser), the knowledge of relays: Btotal
k , Mmax

k ,
Nmax

k , qmax
k .

Output: The sets of NCP decisions: Xncp (or the sets of user
decisions: Xuser) and the preference lists Lncp (or Luser).

1 % Take NCPs for example below;
2 Initialization: Xncp = 0;
3 for j = 1 to |Lncp

unmatched| do
4 if Lncp

j ̸= null then
5 go to step 11;
6 else
7 for k = 1 to |K| do
8 Generate Lncp

j using Prej(k) and sort in descending
order;

9 end
10 end
11 Find the top ranked k in Lncp

j and setting Xncp
kj = 1;

12 end
13 return Xncp, Lncp

matching. The computational complexity is O(max(|Li|i∈N )·
max(|Lk|k∈K))+O(K ·max(|Li|i∈N ))+O(max(|Lj |j∈M) ·
max(|Lk|k∈K)) + O(K ·max(|Lj |j∈M)). Further details on
the analysis process can be found in [16]. In our design,
Algorithm 4 addresses the relay selection problem for both
users and NCPs, enabling them to select the best relays based
on their respective preference profiles. Algorithm 5 solves
the reverse selection problem for relays. Given the selection
requests from users and NCPs, the relays select users and
NCPs that satisfy their preferences and constraints.

Iterative termination conditions are employed to determine
when the matching process should stop. Specifically, if the
total number of NCPs (or users) allowed to be associated
with all relays is less than the actual number of NCPs (or
users), the termination condition is when the preference list
for each NCP (or user) becomes empty. On the other hand,
if the total number of NCPs (or users) allowed to be associated
with all relays is greater than or equal to the actual number of
NCPs (or users), the termination condition is when there are
no unmatched NCPs (or users) left.

For Algorithm 4 implemented by NCPs or users, it has two
phases, i.e., network information collection and preference
list generation. Network information collection: Each relay
broadcasts its resource information (involving total bandwidth,
purchase price cap, etc.).4 Then, each user and NCP sort all
relays according to their own preferences based on the col-
lected information. This step provides important information
for subsequent evaluation. Preference list generation: First,
each NCP (or user) calculates the preference order for all
relays based on the preference profile of NCPs (Prej(k)
or the preference profile of users Prei(k)), and sorts them
in descending order. Then, we select the top-ranked relays
in the preference lists Lncp of NCPs (or Luser of users)
as the current choice of NCPs (or users). Meanwhile, the
selection decisions are sent to the corresponding relays for

4We can guarantee the truthfulness of the information based on third-party
authority platforms [40].
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TABLE II
PARAMETER SETTINGS

Algorithm 5 Matching Evaluation for Each Relay
Input: unmatched NCP set Lncp

unmatched, Lncp
j and Xncp

j , ∀j ∈M
(or unmatched user set Luser

unmatched, Luser
i and Xuser

i ,
∀i ∈ N )

Output: Lncp
unmatched, matched results set Lk↔ncp

matched for NCPs and
relays, Lncp (or Luser

unmatched, matched results set
Lk↔user

matched for users and relays, Luser)
1 for k = 1 to |K| do
2 % Take NCPs for example below;
3 for j = 1 to |Lncp

unmatched| do
4 if Xncp

kj = 1 then
5 if |Lk↔ncp

matched| < Mmax
k then

6 % Reverse Selection Success:
7 Lk↔ncp

matched = Lk↔ncp
matched ∪ j;

8 Lncp
unmatched = Lncp

unmatched \ j;
9 Lncp

j = Lncp
j \ k;

10 else
11 % Competition & Assessment: Comparison with

the existing NCPs in Lr↔ncp
matched using Prek(j);

12 j′ = min(Lk↔ncp
matched);

13 if Lncp
k (j) > Lncp

k (j′) then
14 Performing steps 7-9;
15 Lncp

unmatched = Lncp
unmatched ∪ j′;

16 Lk↔ncp
matched = Lk↔ncp

matched \ j′;
17 else
18 Lncp

j = Lncp
j \ k;

19 end
20 end
21 end
22 end
23 end
24 return Lncp

unmatched, Lk↔ncp
matched and Lncp

feedback. Based on the above, the NCPs (or users) complete
the unilateral selection to maximize their respective benefits.

For Algorithm 5 implemented by relays, it has two phases,
i.e., reverse selection and matching evaluation. Reverse selec-
tion: Upon receiving a selection request from an NCP or
user, the relay performs a reverse selection subject to the
resource constraints being met. If the resource are sufficient,
i.e., the matched NCPs (or users) do not exceed their own con-
straints, then the reverse selection is successful. Otherwise, the
NCP (or user) needs to continue with subsequent assessment
to compete for the relay. Matching assessment: Each NCP
(or user) has competition awareness. When its preferred relay
is full of supportable NCPs (or users), it will compare with
NCPs (or users) that have already been selected by the relay.
If the relay prefers it over the already selected NCPs, it can
replace the least preferred existing NCP and thus successfully
match with the relay. The eliminated NCP will then seek a
new relay for matching.

4) Stability Analysis: The aim of Tripartite matching strat-
egy is to find a stable matching among the three main entities,

where the stability is the key concept of matching theory,
defined as follows:

Definition 7 (Blocking Pair): The pair (j′, k′) is a blocking
pair [39] for the matching Ψ, only if j′ ≻k′ j, j ∈ Ψ(k′)
and k′ ≻j′ k, k ∈ Ψ(j′), for j′ /∈ Ψ(k′) and k′ /∈
Ψ(j′). Particularly, the definition of the blocking pair can be
presented mathematically as

(∀j ∈M, k ∈ K)((j,Ψ(j)), (k,Ψ(k)))
⇒ (∃j′ ∈M, k′ ∈ K)((j′,Ψ(j)), (k′,Ψ(k))). (22)

In other words, there exists a partnership (j′, k′) such that
j′ and k′ are not matched with each other under the current
matching Ψ but prefer to be matched with each other.

Theorem 5: The matching game Ψ is stable if it admits no
blocking pair [41].

Proof: Assume that NCPs j1 and j2 match relays k1 and
k2, respectively. If k2 ≻j1 k1 (k2 ≻j1 k1 implies that j1
prefers k2 to k1. From j1’s standpoint, k2 may bring greater
benefits to j1 than k1.), then j1 must have sent a request to k2.
However, k2 rejected j1 based on its preference list. Then we
can know that j2 ≻k2 j1, i.e., k2 prefers j2 to j1, which leads
to the non-existence of a case that j1 prefers k2 and k2 also
prefers j1. According to Definition 7, there are no blocking
pairs. Thus, the matching game Ψ is proved to be stable. The
same applies to the matching game Φ.

V. EVALUATION

A. Simulation Settings

To verify the effectiveness of the proposed algorithms,
we consider a network architecture consisting of NCPs, relays
and users. The relays are randomly and uniformly placed
among NCPs and users. Each relay has different properties
(e.g., bandwidth and purchase price cap). Inspired by [42],
we set the number of NCPs and users that can be accommo-
dated in each relay to follow random values of no more than
15 and 10, respectively. We consider that users are clustered in
a concentrated area with a radius of no more than 200 meters,
and NCPs are randomly distributed in a 4 km × 4 km 2D
plane, respectively. The specific parameter settings are shown
in Table II.

B. Baselines

For single-relay scenarios, to better demonstrate the advan-
tages of the Two-level game, we design Pro-price and Blind-
matching inspired by [43] and [44] for comparison in terms
of entities’ overall utilities and users’ average energy con-
sumption. In Pro-price, users’ random pricing P are cus-
tomized based on their individual configurations. The relay
then assigns higher priority for computation offloading to
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Fig. 5. The impact of quantity ratio.

Fig. 6. The impact of NCPs’ location distribution.

users with higher pricing. For Blind-matching, users set prices
randomly and the relay allocates offloading amounts x based
on these prices. To facilitate comparison of the average energy
consumption of users, we also add a No-offloading scenario.

For multi-relay scenarios, we design Demand-first and
Caps-first inspired by [45] and [46] for comparison in terms
of entities’ overall utilities and users’ average energy con-
sumption. Moreover, a simplified version of Tripartite called
Unilateral matching is also used as a comparison. Demand-
first: when matching, users and NCPs prefer relays in prox-
imity, while relays prefer users with high offloading demands
and NCPs that can provide more offloading amount. Caps-
first: when matching, users and NCPs prefer relays with more
matches available, while relays prefer users with higher pricing
caps and NCPs that can provide more offloading amount.
Unilateral matching: the NCPs and relays are matched using
the strategy proposed in this paper, however the users and
relays are matched based on distance.

C. Single Relay

1) Performance Evaluation: We evaluate the impact of the
quantity ratio and NCPs’ location distribution on the average
utility of the three main entities. The quantity ratio refers to the
ratio between the number of NCPs and the number of users.
There are three NCP distributions, Beta(α = 2, β = 5): Most
NCPs are concentrated in the area near relay k; Gaussian:
most NCPs are concentrated in the area which is moderately
away from relay k; Beta(α = 9, β = 2): Most NCPs are
concentrated in the area far from relay k.

a) The impact of quantity ratio: As shown in Fig. 5(a),
the average utility of users initially rises and then slowly

decreases as the quantity ratio increases. The highest utility
is achieved when the ratio is 1.3, as indicated by the peak in
the curve. The reason is that at the beginning, there are fewer
resource and more users, and the competition among users is
fierce, so the pricing P (see Fig. 5(b)) of users is high and
the amount of offloading x (see Fig. 5(c)) available to users
is small, resulting in low utility. As the ratio goes up, the
competition among users decreases as there are more NCPs
in the system. This causes P to decrease and x to increase,
resulting in a gradual increase in average utility until reaching
a peak. However, when the number of users is far fewer than
that of NCPs, the system is in a state of resource surplus.
To protect its benefits from great damage, relay k plays a game
with users, urging them to raise their prices appropriately,
which ultimately leads to a decline in users’ average utility
after the peak. We can also see from Fig. 5(a) that the NCPs’
average utility first declines and then stabilizes as the ratio
increases. This is primarily due to the impact of relay k’s
purchase price q and amounts of offloading y provided by
NCPs. As shown in Fig. 5(b), q reaches its maximum when
the ratio is 0.16 due to a shortage of resources. However, as the
ratio increases, the relay gradually reduces q for its benefit
due to the abundant of computation resource, and finally
maintains a lower level. Besides q and y, the NCPs’ average
utility is also affected by their individual energy constraints
and idle resources. Thus, based on the above analysis, the
NCPs’ average utility is consistent with the change of q, and
some slight fluctuations are caused by the diversity of NCPs’
performance. For relay k, its utility is jointly determined by
q, x, y and P . Based on their changing trends, the impact of
ratio on relay k’s utility can be well explained. When the ratio
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is 0.75, the offloading purchased from NCPs are fully utilized.
At this moment, supply and demand reach equilibrium, so that
relay k’s utility is maximized.

b) The impact of NCPs’ location distribution: As shown
in Fig. 6(a), three different NCP location distributions have
distinct effects on the average utility of the three main entities.
Among them, the NCPs’ average utility is the lowest in
Beta(α = 9, β = 2), and the greatest in Gaussian. This is
because the farther the NCP is from the relay, the higher
the cost required to return the computation result. Relay k
therefore raises the purchase price q to encourage NCPs to
contribute idle resources. We can know from Fig. 6(b) and
Fig. 6(c) that within the acceptable cost range, the higher price
q is, the more offloading amount y can be obtained. However, q
will not be increased indefinitely. When NCP is far away, relay
considers its interests and decreases q, and thus y is reduced.
Also, we notice that obtaining the same y from a farther
NCP requires a higher q than a closer NCP. Combining q and
y, NCPs achieve the highest utility when the distribution is
Gaussian. For relay k, its utility is higher in the distribution of
Beta(α = 2, β = 5) and Beta(α = 9, β = 2). This is because
the resource utilization is high in these two distributions,
i.e., the difference between the offloading amount y obtained
from NCPs and the offloading amount x provided to users is
minimal. In terms of the users’ average utility, it is highest in
the Beta(α = 2, β = 5) and lowest in the Beta(α = 9, β = 2).
The reason is that the relay gambles with users based on
existing costs to maximize its utility as much as possible.
Based on the equalization mechanism of the relay, the impact
of NCPs’ location distribution on the users’ average utility can
be easily explained. Specifically, if the relay increases price q,
the user’s pricing P will be raised accordingly (see Fig. 6(b)).
Since x is the same (sufficient resource and a fixed number
of users), the average utility is directly determined by P .

2) Comparisons and Analysis: In general, the proposed
Two-level game has higher overall utilities and lower users’
average energy consumption, which validates the theoretical
results. The overall utilities of Two-level game outperform
Pro-price and Blind-matching, which is improved by 67.6%
and 72.7% compared with the two baselines on average. For
the users’ average energy consumption, Two-level game is
17.1% and 26.5% on average lower than Pro-price and Blind-
matching, respectively.

a) The impact of quantity ratio on the overall utilities of
three main entities: As shown in Fig. 7(a), the overall utilities
of all entities under three algorithms all rise first and then
fall with the increase of the ratio. The overall utilities of Two-
level game are 71.9% and 72.6% higher than that of Pro-price
and Blind-matching, respectively. This is because the objective
of Two-level game is to maximize the utilities of three main
entities. In the case of resource shortage or abundance, relay
k can play games with NCPs and users, and finally make the
utilities of three main entities reach an equilibrium. The Blind-
matching results in high randomness and the lowest overall
utilities due to its arbitrary decision-making. For Pro-price, the
overall utilities are higher than that of Blind-matching when
the ratio is greater than 0.75. This is because the offloading
service is prioritized for users with high prices, which can only

Fig. 7. The impact of quantity ratio.

satisfy a small number of users willing to pay high prices,
resulting in lower overall utilities.

b) The impact of quantity ratio on users’ average energy
consumption: We can find from Fig. 7(b) that as the ratio
increases, the corresponding average energy consumption
obtained from Two-level game, Pro-price, and Blind-matching
all show a gradual downward trend. The reason is that with
more resource and less demand, each user can utilize more
offloading services. Then, the amount of data that needs to be
processed by the user is reduced, thereby reducing the user’s
energy consumption. Among them, the users’ average energy
consumption of Two-level game is 14.6% and 22.4% lower
than that of Pro-price and Blind-matching, respectively. This is
because different from Pro-price and Blind-matching, energy
consumption is considered as a cost in the utility function, and
thus the energy consumption costs are minimized. Meanwhile,
we notice that since all data is processed by users, the users’
average energy consumption of No-offloading is always the
highest. The slight fluctuations are caused by differences in
the computation capability of different users.

c) The impact of relay k’s total bandwidth on the overall
utilities of three main entities: Fig. 8(a) reveals that the three
algorithms are impacted differently as the total bandwidth
Btotalk increases. Specifically, the overall utilities of Pro-price
and Blind-matching show an upward trend as Btotalk increases.
This is because Btotalk directly affects the transmission cost.
As Btotalk increases, the cost decreases, leading to an increase
in overall utilities. However, the overall utilities of Two-level
game rise first and then fall, with 63.4% and 72.8% more
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Fig. 8. The impact of relay k’s total bandwidth.

than Pro-price and Blind-matching, respectively. Besides the
transmission cost, Btotalk also indirectly affects the decisions
of the three entities in Two-level game. When Btotalk is large
enough, the transmission cost is low and the offloading amount
purchased by the relay increases. As a result, the supply
exceeds the demand, and the overall utilities decrease.

d) The impact of relay k’s total bandwidth on users’
average energy consumption: As shown in Fig. 8(b), as Btotalk

increases, the users’ average energy consumption of Two-level
game, Pro-price, and Blind-matching gradually decreases,
while No-offloading consumes the most energy and remains
unchanged. The reason is that users in No-offloading all
choose local processing, which does not involve transmission
energy consumption. Moreover, the energy consumption for
processing is greater than that for transmission, resulting in
the highest average energy consumption for users. For Two-
level game, users consume the least energy on average, which
is 19.7% and 30.7% lower than Pro-price and Blind-matching,
respectively. This is because more offloading is available to the
users in Two-level game. Therefore, as Btotalk increases, the
average energy consumption of the user in Two-level game can
be reduced the most.

D. Multiple Relays

1) Performance Evaluation: We evaluate the impact of the
number of relays on the average utility of three main entities
for varying numbers of users and NCPs (|M | = |N | = 120,
|M | = |N | = 80 and |M | = |N | = 40).

As shown in Fig. 9(a), when the number of users and
NCPs exceeds the capacity of all available relays, the average
utility of relays increases as the number of relays increases.
This is because more relays achieve more offloading services.
Furthermore, the relay has the option to select their preferred
users and NCPs, leading to a higher utility. However, the
average utility of NCPs slowly decreases due to competition
for a limited number of relays. This leads to the fact that not
every NCP can match their most preferred relay and therefore
the best utility is not achieved. We find that the average utility
of users does not fluctuate much, indicating that the number
of relays has minimal impact on users. This is due to the
game between users, which allows the users involved in the
offloading to effectively protect their interests.

As shown in Fig. 9(b), the average utility of the relays rises
first and then falls as the number of relays increases. The
reason is that the number of relays is small at the beginning
and the number of NCPs that can be accommodated is limited.
However, as the number of relays gradually increases, the
NCPs have more advantages and can choose their preferred
relays. Then, the average utility of relays decreases, while
that of NCPs increases. For users, it slowly decreases and
then remains stable. We know that the users’ average utility
is mainly determined by the offloading amount provided by
the relays and its pricing. When the relay’s average utility
decreases due to NCPs, it reduces the offloading amount
provided to users for avoiding utility loss. If a user wants
more offloading services at this time, it needs to increase the
purchase price. However, users set pricing caps to protect their
interests, thus the users’ utilities will level off after a certain
value.

As depicted in Fig. 9(c), when the number of NCPs and
users are much smaller than all relays can afford, the average
utility of relays tends to decrease as the number of relays
increases. This is because there are idle relays that cannot
be matched with NCPs, making it impossible to provide
offloading services to users. Consequently, relays with higher
purchase prices compete for NCPs and provide services to the
users. In contrast, NCPs can select their preferred relay and
receive higher payment from the relay, leading to a gradual
increase in the average utility. However, the users’ average
utility shows a declining trend. This is because the relay
reduces offloading amount provided to the users in order to
mitigate the decrease in utility, which causes the users to
increase their prices.

2) Comparisons and Analysis: From Fig. 10(a), it is found
that the overall utilities of all entities under the four methods
show an upward trend as the number of relays increases
(see reasons analyzed in Fig. 9(a)). Specifically, Tripartite
and Unilateral matching perform better than Demand-first and
Caps-first. This is because Tripartite considers factors such
as bandwidth, distance, purchase price and the number of
relays that can be matched in the utility function. It allows the
three main entities to achieve the best matching results, thus
maximizing their utilities. However, Unilateral matching only
considers the best matching between NCPs and relays, result-
ing in less utility than Tripartite. The Demand-first focuses
on users’ offloading demands and the amount of offloading
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Fig. 9. The number of relays.

Fig. 10. The number of relays.

available from NCPs, but ignores offloading costs, resulting
in the lowest performance. Given the number of relays that
can be matched and the pricing caps of users, Caps-first is
slightly better than Demand-first, however its utility remains
undesirable compared to the fully considered Tripartite.

As shown in Fig. 10(b), the energy consumption of Tri-
partite and Unilateral matching decreases as the number of
relays increases. Moreover, the energy savings of Tripartite
are optimal. This is because more users have access to
offloading services based on the best matching, and reduce
their energy overhead. The offloading energy consumption has
been shown to be much lower than the local computing energy
consumption. This is due to the fact that users select relays
by considering distance, bandwidth and other factors to make
their offloading costs as low as possible. However, Demand-
first and Caps-first show instability, i.e., the increase in the

number of relays fails to help more users to obtain better
offloading services. The reason for this is that incomplete
consideration in the selection of relays has resulted in many
users or NCPs not being matched to the appropriate relay,
or even not being matched.

VI. CONCLUSION

In this paper, we propose a dispersed service framework
to effectively alleviate the urgent computation overload in
practically challenging scenarios. A game-based incentive-
driven offloading mechanism is developed to encourage the
participation of the three main entities. Depending on the
number of users, we design solutions for small-scale scenarios
with single relay and large-scale scenarios with multiple
relays, respectively. For single-relay scenarios, we construct
a two-level Stackelberg game by leveraging a single relay
as a bridge to achieve a Nash equilibrium among the three
main entities. For multi-relay scenarios, we develop a tripartite
matching strategy to assign appropriate relays to users and
NCPs, allowing the multi-relay problem to be decomposed
into multiple single-relay problems. We conduct extensive
simulations and the results show that the proposed mecha-
nism provides a feasible solution to an accidental and urgent
resource exhaustion in a network.
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